Zodiac Discussion Forum

Homophonic substitu…
 
Notifications
Clear all

Homophonic substitution

1,434 Posts
21 Users
0 Reactions
312.6 K Views
(@mr-lowe)
Posts: 1197
Noble Member
 

Doaranchak..Yes I see ..right you are.. .. Lots of palindromes within a larger word group or sentence……….but I like the word racecar as a Z word..

 
Posted : April 12, 2016 2:35 pm
doranchak
(@doranchak)
Posts: 2614
Member Admin
 

When running azdecrypt on manipulations of Z340, I like to use the same settings (30 restarts, 1,000,000 iterations) each time so I can compare the resulting scores. Unmanipulated, Z340 tends to score around 20,327.

I’ve gotten spikes around 20,900 for some of the transposed cipher texts. The plain texts still seem meaningless. But are the spikes significant?

To try to answer that, I created 10,000 random shuffles of Z340, ran them through azdecrypt and computed these statistics:

  • Min score: 19356
  • Max score: 20473
  • Mean score: 19880
  • Score Std Dev: 165
  • Min ioc: 652.0
  • Max ioc: 858.0
  • Mean ioc: 747
  • ioc Std Dev: 29
  • [/list:u:3nw63mde]

    Based on those stats, the unmanipulated Z340 already produces an azdecrypt score at a statistical significance level of 2.7 sigma (2.7 times one standard deviation) compared to the 10,000 random shuffles.

    The best score I’ve seen in my experiments was 20,918 which has a statistical significance level of 6.3 sigma. So, here are all the manipulations I’ve found so far that score at 5 sigma or higher, in either the forward or backward reading direction:

    Key: First line is the set of manipulations. Then the resulting cipher text is shown, followed by the azdecrypt scores in the forward and reverse reading directions.

    PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(16, 1, 4, 4) Rotate(1) RectangularSelection(19, 8, 1, 8) PeriodColumn(7) SwapLinear(196, 261, 36) Swap(6, 155, 4, 10)
    HTEGR2F-kCdcW<7tL
    B#yz:HYWD%O#JRBfL
    _&94Mkp3V*8lf|()+
    #.5z+L2V8H.c25^2V
    dA<6M4+Kb+ZR2FBcy
    UT+MRK/pltE|DYBpb
    z(6;98SM+#+N|5FBc
    yZB5X-1zt:49CE>VU
    RBc|T)+LL16C<+FlW
    |*>dO5^VPk|1B_YOB
    <.cJRyUZGW()+Kp*N
    +O+/+*jd|5FPFlBc&
    <+K|q%;2UcXG+N+Ft
    G4lfOS^.(KFL2@G+(
    <7pO+J^+V-UylBzF-
    .M4T5*^7KpRp+SFkC
    d*-OlBz^DR28>pzYN
    _+O#jf9J(23G.qcM|
    TZOpbcWzCpW))(+/+
    AzPO4SkpN|+H;DKM>
    20,516    20,918
    
    PeriodColumn(2) Period(18) Swap(202, 104, 8, 1)
    H+M8|CV@Kz/JNbVM)
    |DR(UVFFz9<Ut*5cZ
    G+kNpOGp+2|G++|TB
    4-R)Wk^D(+4(5J+JY
    M(+|TC7zPYLR/8KjR
    Op+8y.LWBO|<z29^%
    OF.TBlXz6PYALKJp+
    l25cFKzF*K<SBKG)y
    7t^cYAy29^4OFT-+d
    pcfddG+4Ucy5C^W(c
    MER+*5k.L-RR+4>f|
    pFS>#Z3P>Ldl5||7U
    qL2dpl%WO&D(MVE_F
    V5CcW<SVW)+k#2b-D
    4ct+c+ztZk.#Kp+lZ
    +B.;+B31c_81*H_Bq
    #2pb&RG1BCOO|TfHM
    F;+B<MF6N:(+H*;+B
    pzOUNyBO<Sf9pl/2N
    :^j*Xz6-+l#2E.B)>
    20,900    20,569
    
    LinearSelection(33, 18) Diagonal(1) PeriodColumn(2) Period(18) PeriodRow(8)
    H+c8|CV@Kz/JNbVM)
    7t-cYAy29^4OFT-+d
    #2pb&RG1BCOO|TfSM
    |DR(+VFFz9<Ut*5cZ
    p:lddG+4Ucy5C^W(c
    F;+B<MF6N:(+H*;2B
    G+kNpOZp+2|G++|TB
    MEBM*5k.L-RR+4>f|
    pzOUNyBO<Sf9pl/CN
    4-R)Wk^DW+4(5J+JY
    pFH>#U3P>Ldl5||.U
    y^j*Xz6-+l#2E.B)>
    M(+|TC7zPY)R/8KjR
    qL+dpl%GO&D(MVE5F
    Op+8y.LWBO|<#29^%
    V52cW<SVW(+k#2b^D
    OF7TBlXz6PYALKHp+
    4ct+c+ztZk.LKp+fZ
    l2_cFKzF*K<SBKG)J
    +B.;+B31c_81*z_Rq
    20,859    20,480
    
    SwapLinear(34, 85, 15) Quadrants(9, 4, 3, 0, 4 [0, 0, 0, 0, 0, 0, 1, 0, 0])
    HER>Np+Bp8R^Spp7_
    9M+By:c#5+K(G2Jd<
    M+Ulz-/R+Ulc<2S96
    zNFGl1XBy3.c|+TcR
    W)++dkF|HDM>V+^J+
    Op7<FBy-5tE|DYBpb
    TMKORJ|*5T4M.+&BF
    y#+N|5FBc(;8R^f52
    4b.cV4t++*:49CE>V
    UZ5-+zBK(Op^.fMqG
    2L16C<+FlWB|)LCzW
    cPOSHT/()pW<7tB_Y
    OB*-CcNpkSzZO8A|K
    ;+pl^VPk|1LTG2d(#
    O%DWY.<*Kf)FlO-*d
    CkF>2HJ^l8*V3pO++
    RK2ztjd|5FP+&4k/M
    +UZGW()L#zD(q%;2U
    cXGV.zL|fj#O+_NYz
    +@L9b+ZR2FBcyA64K
    20,258    20,845
    
    LinearSelection(131, 86) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5)
    HER>pl^VPk|1LTG2d
    Np+B(#O%DWY.<*Kf)
    By:cM+UZGW()L#zHJ
    Spp7^l8*V3pO++RK2
    _9M+ztjd|5FP+&4k/
    p8R^FlO-*dCc<2OB(
    #5+Kq%;2UcXzF&M+|
    (G2Jfj#O+_N^f524p
    7c46AyBpByB*:49CD
    +2|JRE^Zt++zBK(O+
    RlM+z<U-d-KL16C<*
    |JRlkF>2DKBCzWcP#
    yS96GV.zLTc.b(;8R
    lGFNYL@+zb.cV4t++
    yBX1F<YOFE>VUZ5-+
    |c.35Vb/Up^.fMqG2
    RcT+9M4T5+FlWB|)L
    ++)WF5|N+OSHT/()p
    |FkdW<7tB_YOB*-Cc
    >MDHNpkSzZO8A|K;+
    20,456    20,844
    
    PeriodColumn(2) Period(18) SwapLinear(5, 105, 99) Swap(20, 64, 7, 2)
    H+M8|TBlXz6PYALKJ
    p+l5CcFKzF*K<SBKG
    )y7R+cYAy29^4OFT-
    +dpl5ddG+4Ucy2_^W
    (cMM)+*5k.L-Rt-4>
    f|pcZ>#Z3P>Ldcl||
    .U7TB@Kz/JNbVEB|D
    R(UJYFz9<Ut*5FHG+
    kNpOGp+2|G++|CV4-
    R)Wk^D(+4(5J+VFM(
    +|TC7zPYLR/8KjROp
    +8y.LWBO|<z29^%OF
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,842    20,550
    
    LinearSelection(131, 103) Quadrants(3, 8, 1, 0, 1639 [0, 3, 0, 3, 0, 0, 1, 1, 1]) FlipVertical() SwapLinear(96, 59, 13) Quadrants(10, 3, 4, 0, 12 [0, 0, 0, 0, 0, 1, 1, 0, 0])
    DM>kF|)++TcRM&;XB
    yL)|f52RJ|Z^ERJ|2
    +DFOYBpBc7U-yBF<l
    z-K46Ay9L@+zYN_+O
    #jfJ|Lz.VGXcU2;%q
    K(D2>FkCd*-OlF^/k
    4&+PF5|djtz+2KR++
    Op3V*8l^7JHz#L)(W
    GZU+Mc)fK*<.YWD%O
    #(Bd2GTL1|kPV^lp>
    HNpkSzZO8A|K;+dW<
    7tB_YOB*-CcWCzWcP
    OSHT/()p+L16CVUZ5
    -+8BK(zBK(Op^.fMq
    G21*:49CE><+FlWB|
    c.3+TVc.b4t++^NF9
    cG6<lz2RFOlBF5|N+
    #ySc.b4t++5Vb/U+M
    4T5*+Rpd<M(G2#5+p
    8R_9MSppBy:Np+HER
    20,635    20,824
    
    LinearSelection(131, 103) Quadrants(3, 4, 1, 0, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5) PeriodRow(8)
    HER>pl^VPk|1LTG2d
    6AyyBF<p7cB*:49CD
    RcT+9M4T5+FlWB|)L
    Np+B(#O%DWY.<*Kf)
    +2|JRE^Zt++zBK(O+
    ++)W|N+#yOSHT/()p
    By:cM+UZGW()L#zHJ
    RlM+z<U-d-KL16C<*
    |FkdW<7tB_YOB*-Cc
    Spp7^l8*V3pO++RK2
    |JRlkF>2DF5CzWcPS
    >MDHNpkSzZO8A|K;+
    _9M+ztjd|5FP+&4k/
    96zFGV.zL5f^NFGlR
    p8R^FlO-*dCc<2OB(
    8BK;YL@+zVc.b4t++
    #5+Kq%;2UcXc.b42|
    yBX1pBYOFE>VUZ5-+
    (G2Jfj#O+_N&M(+T4
    |c.35Vb/Up^.fMqG2
    20,822    20,578
    
    Period(19) FlipHorizontal() Quadrants(3, 3, 11, 1, 2281 [1, 0, 1, 3, 0, 1, 0, 0, 1]) FlipVertical()
    *KGfJ_8+Jb+E*|M|)
    S9RKf+^|55.VfBWlT
    jZJDTFcUb>.(/-;2)
    4+GddlcpcC+dBpM^q
    S<-6zX*j^:N^C5ycU
    FO4^92yAYc-t7yp9f
    H>pH+(:N6OByNUOzp
    +EMBS<K*FzKFc_2l+
    MBR|OOCB1GFM<B+;F
    8+(TAYP6zXlBT7FO%
    |*UKL8_c13BR&bp2#
    C5VH*1OBWL.y8+pOR
    VkF2z<|Ztz+c+;.B+
    @.FpK#.kz7CT|+(MY
    KLz5/RLYPS<Wc+tc4
    +-92#k+)WVkW)R-4B
    lRz+G(4+(D^pd+25V
    #R/VM(D&OW%lNk+GZ
    2+JtU<|2+pGOpHFLq
    E4N|5ldL>P3Z#>D|)
    20,820    20,466
    
    PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(18, 7, 2, 7) Reverse() SwapLinear(196, 261, 47) SwapLinear(6, 155, 72)
    HTEGR2F-kCdcW<7tB
    _YOB<.YWD%O#JRBf+
    Kp*N+Op3V*8lf|()F
    lBc&<+2Vc.b425^2+
    N+FtG4lf.^ZR2FBcy
    UT+MRK/pltE|DYBpb
    z(6;98SM+#+N|5FBc
    yZB5X-1zt:49CE>VU
    RBc|T)+LL16C<+FlW
    |*>dO5^VPk|1LB#yz
    :HcJRyUZGW()L_&94
    Mk+/+*jd|5FP+#.5z
    +LK|q%;2UcXGVdA<6
    M4+Kb+pO(KF(23G.q
    cM|THJ^+V-UylBzF-
    .M4T5*^7KpRp+SFkC
    d*-OlBz^DR28>pzYN
    _+O#jf9JL2@G+(<7p
    O+SOPcWKD;H+Np+/+
    A8OZzSk())WpCzM|>
    20,818    20,653
    
    Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2314 [1, 0, 2, 0, 0, 1, 0, 1, 0]) PeriodRow(12)
    E4N|tU<|2+pGOpHFL
    <K*FzKFc_2l++EM|H
    q2+J5VM(D&OW%lNk+
    +(:N6OByNUOzpH>p)
    GZ#R/l+G(4+(D^pd+
    FO4^92yAYc-t7yp9f
    25VlRzd2#k+)WVkW)
    S<-6zX*j^:N^C5ycU
    R-4B+-9L5/RLYPS<W
    4+Gddlcpc(W)B.C/l
    c+tc4KLz>pK#.kz7C
    |f>+-TMVbd;*U.|B2
    T|+(MY@.FP2z<|Ztz
    Kp)GMSf^9JqR_jK8Z
    +c+;.B+VkF3H*1OBW
    f+J+JD^bT|+F5Ec5*
    L.y8+pORC5VZKL8_c
    13BR&bp2#|*U#TAYP
    6zXlBT7FO%8+(>|OO
    CB1GFM<B+;FMBRDBS
    20,811    20,594
    
    PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(18, 7, 1, 7) Shift(5, 6) SwapLinear(196, 261, 59) Swap(6, 155, 5, 10) Shift(0, 324)
    dA<6M4lf.^pO(KF(y
    UT+MRK/pltE|DYBpb
    z(6;98SM+#+N|5FBc
    yZB5X-1zt:49CE>VU
    RBc|T)+LL16C<+FlW
    |*>dO5^VPk|1B_YOB
    <.cJRyUZGW()+Kp*N
    +O+/+*jd|5FPFlBc&
    <+K|q%;2UcXG+N+Ft
    G4+Kb+ZR2FBc23G.q
    cM|THSOPcW(zCpW))
    .M4T5*^7KpRp+SFkC
    d*-OlBz^DR28>pzYN
    _+O#jf9JL2@G+(<7p
    O+J^+V-UylBzF-+/+
    A8OZzSkpN+H;DKM|>
    HTEGR2F-kCdcW<7tL
    B#yz:HYWD%O#JRBfL
    _&94Mkp3V*8lf|()+
    #.5z+L2Vc.b425^2V
    20,396    20,805
    
    PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(16, 1, 4, 4) Rotate(1) RectangularSelection(18, 8, 1, 8) Rotate(3) SwapLinear(196, 261, 35) Swap(6, 155, 4, 10)
    HTEGR2F-kCdcW<7tL
    B#yz:HYWD%O#JRBfL
    _&94Mkp3V*8lf|()+
    #.5z+L2V8H.c25^2V
    dA<6M4+Kb+ZR2FBcy
    UT+MRK/pltE|DYBpb
    z(6;98SM+#+N|5FBc
    yZB5X-1zt:49CE>VU
    RBc|T)+LL16C<+FlW
    |*>dO5^VPk|1B_YOB
    <.cJRyUZGW()+Kp*N
    +O+/+*jd|5FPFlBc&
    <+K|q%;2UcXG+N+Ft
    G4lfOS^.(KJL2@G+(
    <7pO+J^+V-UylBzF-
    .M4T5*^7KpRp+SFkC
    d*-OlBz^DR28>pzYN
    _+O#jf9F(23G.qcM|
    TZOpbcWz/+())WpC+
    AzPO4SkpN+H;DKM|>
    20,803    20,685
    
    PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(15, 1, 4, 4) Rotate(1) RectangularSelection(18, 7, 2, 7) Shift(5, 12) SwapLinear(196, 261, 47) Swap(6, 155, 4, 10)
    HTEGR2F-kCdcW<7tL
    B#yz:HYWD%O#JRBfL
    _&94Mkp3V*8lf|()+
    #.5z+L2VS^.425^2V
    dA<6M4+Kb+ZR2FBcy
    UT+MRK/pltE|DYBpb
    z(6;98SM+#+N|5FBc
    yZB5X-1zt:49CE>VU
    RBc|T)+LL16C<+FlW
    |*>dO5^VPk|1B_YOB
    <.cJRyUZGW()+Kp*N
    +O+/+*jd|5FPFlBc&
    <+K|q%;2UcXG+N+Ft
    G4lfOpbT(KF(23G.q
    cM|TPJ^+V-UylBzF-
    .H.cM*^7KpRp+SFkC
    d*-OlBz^DR28>pzYN
    _+O#jf9JL2@G+(<7p
    O+O45cW)(zCpW)+/+
    A8OZzSkDKpN+H;M|>
    20,685    20,791
    
    PeriodColumn(2) Period(18) SwapLinear(5, 105, 100) Swap(20, 79, 3, 2)
    H+M8|TBlXz6PYALKJ
    p+l-RcFKzF*K<SBKG
    )y7LdcYAy29^4OFT-
    +dpbVddG+4Ucy5C^W
    (cMEB+*5k.L2_R+4>
    f|pFH>#Z3P>t-l5||
    .UqCV@Kz/JNclM)|D
    R(UVFFz9<Ut*5cZG+
    kNpOGp+2|G++|TB4-
    R)Wk^D(+4(5J+JYM(
    +|TC7zPYLR/8KjROp
    +8y.LWBO|<z29^%OF
    7L+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,791    20,418
    
    PeriodColumn(2) Period(18) SwapLinear(6, 104, 82) Swap(165, 238, 3, 2)
    H+M8|C7TBlXz6PYAL
    KJp+l2_cFKzF*K<SB
    KG)y7t-cYAy29^4OF
    T-+dpclddG+4Ucy5C
    ^W(cMEB+*5k.L-RR+
    4>f8y.LWBO|<z29^%
    OFV@Kz/JNbVM)|DR(
    UVFFz9<Ut*5cZG+kN
    pOGp+2|G++|TB4-R)
    Wk^D(+4(5J+J4c(+|
    TC7zPYLR/8Kj+Bp+|
    pFH>#Z3P>Ldl#2|.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    YMt+c+ztZk.#Kp+fZ
    RO.;+B31c_81*H_Rq
    5|pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,782    20,611
    
    LinearSelection(131, 103) Quadrants(3, 8, 1, 0, 1639 [0, 3, 0, 3, 0, 0, 1, 1, 1]) SwapLinear(95, 58, 22) Quadrants(10, 3, 0, 0, 9 [0, 0, 0, 0, 0, 1, 0, 0, 1])
    REH+pN:yBppS%qKR8
    p2KR2G(M<dpR+>pl^
    VPk|1LTG2dB(#O%DW
    Y.<*Kf)cM+UZGW()L
    #zHJ7^l8CkF>2D(#5
    +;2UcXGV.z+&4k/^F
    lO-*d*V3pO++_9M+z
    tjd|5FPL|Jfj#O+_N
    Yz+@L9yA64K-zl<FB
    y-U7cBpBYOFD+2|JR
    E^Z|JR25f8BKyBX|c
    .RcT++)|Fk>MD*5T4
    M+U/bV5++t4b.cSy#
    +N|5FBlOFR2zl<6Gc
    9FN^++t4b.cVT+(M&
    ;+-5ZUV>EC94:*12G
    qMf.^pO(KBz3L)|BW
    lF+<C61L+p)(/THSO
    PcWzCWcC-*BOY_Bt7
    <Wd+;K|A8OZzSkpNH
    20,778    20,440
    
    PeriodColumn(2) Period(18) Swap(12, 104, 6, 1) Swap(101, 238, 1, 1)
    H+M8|CV@Kz/J7bVM)
    |DR(UVFFz9<U_*5cZ
    G+kNpOGp+2|G-+|TB
    4-R)Wk^D(+4(lJ+JY
    M(+|TC7zPYLRB8KjR
    Op+8y.LWBO|<H29^4
    OFNTBlXz6PYALKJp+
    l2tcFKzF*K<SBKG)y
    7t+cYAy29^4OFT-+d
    pc5ddG+4Ucy5C^W(c
    ME/+*5k.L-RR+4>f|
    pFz>#Z3P>Ldl5||.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    %ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,538    20,770
    
    PeriodColumn(2) Period(18) Swap(12, 131, 7, 1) SwapLinear(92, 52, 9)
    H+M8|CV@Kz/JBbVM)
    |DR(UVFFz9<UF*5cZ
    G+kNpOGp+2|GC+|TB
    4WBO|<M29^4(+J+JY
    M(+|TC7zPYLR58KjR
    Op+8y.L-R)Wk^D(+%
    OF7TBlXz6PYA#KJp+
    l2_cFKzF*K<SNKG)y
    7t-cYAy29^4OtT-+d
    pclddG+4Ucy5+^W(c
    MEB+*5k.L-RR54>f|
    pFH>#Z3P>Ldl/||.U
    qL+dpl%WO&D(zVE5F
    V52cW<SVW)+kL2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,761    20,645
    
    PeriodColumn(2) Period(18) Swap(4, 104, 10, 1) SwapLinear(101, 238, 55)
    H+M87CV@Kz/JNbVM)
    |DR(_VFFz9<Ut*5cZ
    G+kN-OGp+2|G++|TB
    4-R)lk^D(+4(5J+JY
    M(+|BC7zPYLR/8KjR
    Op+8H.LWBO|<z29^4
    cY+c+ztZk.#Kp+fZ+
    Bd;+B31c_81*H_Rq#
    2pb&RG1BCOO|TfSMF
    ;+Bd.G+4Ucy5C^W(c
    MET+*5k.L-RR+4>f|
    pFy>#Z3P>Ldl5||.U
    qLBdpl%WO&D(MVE5F
    V5FcW<SVW)+k#2b^D
    %OF|T+lXz6PYALKJp
    +l2Uc2KzF*K<SBKG)
    y7tpctAy29^4OFT-+
    dpcW<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,692    20,761
    
    PeriodColumn(2) Period(18) Swap(5, 63, 10, 2)
    H+M8|5J@Kz/JNbVM)
    |DR(U/8Fz9<Ut*5cZ
    G+kNpz2p+2|G++|TB
    4-R)WLKD(+4(CV+JY
    M(+|TBKzPYLRVFKjR
    Op+8yFTWBO|<OG9^%
    OF7TBC^z6PYAk^Jp+
    l2_cF+4F*K<SC7G)y
    7t-cY5|29^4O.L-+d
    pclddMV4Ucy5lXW(c
    MEB+*5k.L-RRKz>f|
    pFH>#Z3P>LdlAy|.U
    qL+dpl%WO&D(G+E5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,757    20,429
    
    PeriodColumn(2) Period(18) Swap(5, 148, 6, 2)
    H+M8|FT@Kz/JNbVM)
    |DR(UC^Fz9<Ut*5cZ
    G+kNp+4p+2|G++|TB
    4-R)W5|D(+4(5J+JY
    M(+|TMVzPYLR/8KjR
    Op+8y#2WBO|<z29^%
    OF7TBlXz6PYALKJp+
    l2_cFKzF*K<SBKG)y
    7t-cYAy29^4OCV-+d
    pclddG+4Ucy5VFW(c
    MEB+*5k.L-RROG>f|
    pFH>#Z3P>Ldlk^|.U
    qL+dpl%WO&D(C7E5F
    V52cW<SVW)+k.Lb^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,756    20,657
    
    LinearSelection(220, 116) PeriodColumn(6) PeriodRow(3) Swap(58, 86, 4, 1)
    HER>pl^VPk|1LTG2d
    Spp7^l8*V3pO++RK2
    #5+Kq%;2UcXGV.zL|
    -zlUV+^.+Op7<FBy-
    z69Sy#+O|5FBc(;8R
    BJ|Kfc(p.Oq3pGz^2
    <N|7BFt9kB-d_CWYc
    NM+B(#O%DWY.<*Kf)
    _*M+ztjd|5FP+&4k/
    (G2Jfj#O+_NYz+@L9
    U+R/5tE|DYBpbTMKO
    fcl5VG24F4tNb+^.+
    1lR6WcCBT<|++)LFL
    p8>kAMSDzHZNO|K;+
    By:cM+UZGW()L#zHJ
    p8R^FlO-*dCkF>2D(
    d<M+b+ZR2FBcyA64K
    2<clRJ|*5T4M.+&BF
    :Vy4UB9ZXC51E-*>+
    zH+WT+c/)P(WO)CSp
    20,753    20,484
    
    Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1]) LinearSelection(17, 299) PeriodRow(12) SwapLinear(108, 205, 32)
    E4N|tU<|2+pGOpHFL
    q2+J5VM(D&OW%lNk+
    +(:N6OByNUOzpH>p)
    GZ#R/l+G(4+(D^pd+
    FO4^92yAYc-t7yp9f
    25VlRzd2#k+)WVkW)
    S<-6zXp)GMSf^9J+c
    +;.B+VkF3H*1OBWL.
    y8+pdlcpc(W.B)C/l
    c+tc4KLz>pK#.kz7C
    >f|+-TbVMd;*|.UB2
    T|+(MY@.FP2z<|Ztz
    K*j^:N^C5ycUR-4B+
    -9L5/RLYPS<W4+GdO
    RC5VZKL8_c13BR&bp
    2#|*U#TAYP6zXlBT7
    FO%8+(>|OOCB1GFM<
    B+;FMBRDBS<K*FzKF
    c_2l++EM|HqR_jK8Z
    f+J+JD^bT|+F5Ec5*
    20,507    20,748
    
    PeriodColumn(2) Period(18) Swap(5, 148, 6, 2) SwapLinear(36, 95, 25)
    H+M8|FT@Kz/JNbVM)
    |DR(UC^Fz9<Ut*5cZ
    G+|<z29^%OF7TBlXz
    6PYALKJp+l4(5J+JY
    M(+|TMVzPYLR/8KjR
    Op+8y#2WBOkNp+4p+
    2|G++|TB4-R)W5|D(
    +2_cFKzF*K<SBKG)y
    7t-cYAy29^4OCV-+d
    pclddG+4Ucy5VFW(c
    MEB+*5k.L-RROG>f|
    pFH>#Z3P>Ldlk^|.U
    qL+dpl%WO&D(C7E5F
    V52cW<SVW)+k.Lb^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,733    20,746
    
    LinearSelection(131, 103) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5) PeriodRow(8)
    HER>pl^VPk|1LTG2d
    7c46AyBpByB*:49CD
    RcT+9M4T5+FlWB|)L
    Np+B(#O%DWY.<*Kf)
    +2|JRE^Zt++zBK(O+
    ++)WBF5|NOSHT/()p
    By:cM+UZGW()L#zHJ
    RlM+z<U-d-KL16C<*
    |FkdW<7tB_YOB*-Cc
    Spp7^l8*V3pO++RK2
    |JRlkF>2DBKCzWcP+
    >MDHNpkSzZO8A|K;+
    _9M+ztjd|5FP+&4k/
    #yS9GV.zLMc.b425f
    p8R^FlO-*dCc<2O8(
    ^NFGYL@+zVc.b4t++
    #5+Kq%;2UcX6zF;&|
    yBX1F<YOFE>VUZ5-+
    (G2Jfj#O+_NlR(+Tp
    |c.35Vb/Up^.fMqG2
    20,669    20,746
    
    PeriodRow(3) Swap(54, 97, 9, 2) Swap(83, 19, 4, 2)
    HER>pl^VPk|1LTG2d
    Sp8R^l8*V3pO++RK2
    #5G2q%;2UcXGV.zL|
    -zCcM+^J+Op7<FBy-
    z6f)*#+N|5FBc(;p7
    |c.<*BK(Op^.UVq+K
    |Fk+&<7tB_YOSy-lf
    Np+z+#O%DWY.3zK9B
    _9MbTtjd|5FPdW4k/
    (G2V4j#O+_NYB(@L9
    U+RWBtE|DYBp+zMKO
    lGFA|f524b.cJft++
    RcT+L16C<+Fl/5|)L
    >MDHNpkSzZO8N^K;+
    By:cM+UZGW()L#zHJ
    p8R^FlO-*dCkF>2D(
    d<M+b+ZR2FBcyA64K
    2<clRJ|*5T4M.+&BF
    yBX1*:49CE>VUZ5-+
    ++)WCzWcPOSHT/()p
    20,630    20,736
    
    PeriodColumn(13) Snake() Swap(8, 177, 7, 3) PeriodRow(2) RectangularSelection(18, 7, 2, 7) Shift(3, 10) SwapLinear(196, 261, 47) Swap(6, 155, 5, 11)
    HTEGR2F-kCdcW<7tB
    B#yz:HYWD%O#JRFf+
    _&94Mkp3V*8lf|()B
    #.5z+L2Vc.b425^27
    dA<6M4lf.^pO(KF(^
    UT+MRK/pl^E|DYBpb
    z(6;98SM+U+N|5FBc
    yZB5X-1ztj49CE>VU
    RBc|T)+q%;6C<+FlW
    |*>dO5tVPk|1L_YOB
    <.cJRy#ZGW()LKp*N
    +O+/+*:d|5FP+lBc&
    <+K|LL12UcXGVN+Ft
    G4+Kb+ZR2FBcy3G.q
    cM|THJ^+V-UylBzF-
    .M4T5*^+KpRp+SFkC
    d*-OlBz2DR28>pzYN
    _+O#jf9JL2@G+(<7p
    O+SOPcW))(zCpW+/+
    A8OZzSk;DKpN+HM|>
    20,513    20,732
    
    PeriodColumn(2) Period(18) Swap(12, 105, 8, 1) Swap(101, 238, 3, 1)
    H+M8|CV@Kz/JTbVM)
    |DR(UVFFz9<Uc*5cZ
    G+kNpOGp+2|Gc+|TB
    4-R)Wk^D(+4(dJ+JY
    M(+|TC7zPYLR+8KjR
    Op+8y.LWBO|<>29^4
    OF7NBlXz6PYAdKJp+
    l2_tFKzF*K<ScKG)#
    7t-+YAy29^4OFT-+d
    pcl5dG+4Ucy5C^W(c
    MEB/*5k.L-RR+4>f|
    pFHz#Z3P>Ldl5||.U
    qL+Lpl%WO&D(MVE5F
    V52BW<SVW)+k#2b^D
    %ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    y2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,483    20,724
    
    Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1]) LinearSelection(17, 293) PeriodRow(12)
    E4N|tU<|2+pGOpHFL
    q2+J5VM(D&OW%lNk+
    +(:N6OByNUOzpH>p)
    GZ#R/l+G(4+(D^pd+
    FO4^92yAYc-t7yp9f
    25VlRzd2#k+)WVkW)
    S<-6zX*j^:N^C5ycU
    R-4B+-9L5/RLYPS<W
    4+Gddlcpc(W.B)C/l
    c+tc4KLz>pK#.kz7C
    >f|+-TbVMd;*|.UB2
    T|+(MY@.FP2z<|Ztz
    Kp)G+c+;.B+VkF3H*
    1OBWL.y8+pORC5VZK
    L8_c13BR&bp2#|*U#
    TAYP6zXlBT7FO%8+(
    >|OOCB1GFM<B+;FMB
    RDBS<K*FzKFc_2l++
    EM|HMSf^9JqR_jK8Z
    f+J+JD^bT|+F5Ec5*
    20,358    20,724
    
    PeriodColumn(2) Period(18) Swap(5, 104, 6, 8)
    H+M8|7TBlXz6PbVM)
    |DR(U_cFKzF*K*5cZ
    G+kNp-cYAy29^+|TB
    4-R)WlddG+4UcJ+JY
    M(+|TB+*5k.L-8KjR
    Op+8yH>#Z3P>L29^%
    OFCV@Kz/JNYALKJp+
    l2VFFz9<Ut<SBKG)y
    7tOGp+2|G+4OFT-+d
    pck^D(+4(5y5C^W(c
    MEC7zPYLR/RR+4>f|
    pF.LWBO|<zdl5||.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,722    20,621
    
    FlipHorizontal() Period(15) PeriodRow(10)
    dEB+*5k.L(MVE5FV5
    B<MF<Sf9pl/C|DPYL
    2c+ztZ2H+M8|CV@K<
    R/9^%OF7TB29^4OFT
    Ut*5cZG|TC7zG)pcl
    -+MVW)+k_Rq#2pb&R
    ddG+4dl5||.UqLcW<
    6N:(+H*;>^D(+4(8K
    STfN:^j*Xz6-z/JNb
    jROp+8zF*K<SBKl%W
    VM)R)WkLKJy7t-cYA
    O&Dp+fZ+B.;+G1BCO
    y-RR+4>f|p+dp1*HB
    O|pOGp+2|5J+JYM(+
    pzOUNyBO+l#2E.B)+
    lXz6PYA>#Z3P>L#2b
    kN|<z2p+l2_cFKUcy
    ^D4ct+B31c_8R(UVF
    5C^W(cFHk.#KSMF;+
    Fz9G++|TB4-y.LWBO
    20,722    20,353
    
    LinearSelection(131, 103) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) LinearSelection(90, 30) Diagonal(1) Swap(96, 191, 7, 5) FlipHorizontal() FlipVertical() PeriodRow(8)
    +;K|A8OZzSkpNHDM>
    +PcWzCKBcCUd2lRJ|
    2KR++Op3V*8l^7ppS
    cC-*BOY_Bt7<WdkF|
    *<C61LK-d-U<z+MlR
    JHz#L)(WGZU+Mc:yB
    p)(/THSON|5FBW)++
    +O(KBz++tZ^ERJ|2+
    )fK*<.YWD%O#(B+pN
    L)|BWlF+5T4M9+TcR
    DC94:*ByBpByA64c7
    d2GTL1|kPV^lp>REH
    2GqMf.^pU/bV53.c|
    pT+(RlN_+O#jfJ2Gq
    +-5ZUV>EFOY<F1XBy
    K&;Fz6L(zD.2V>GFX
    ++t4b.cVz+@LYGFN^
    k8O2<c*;-%OlF^R8p
    f524b.cM+(5|#9Sy#
    /k4&+PF5|djtz+M9_
    20,721    20,648
    
    PeriodColumn(2) Period(18) Swap(4, 104, 8, 1) SwapLinear(116, 18, 1)
    H+M87CV@Kz/JNbVM)
    |JR(_VFFz9<Ut*5cZ
    G+kN-OGp+2|G++|TB
    4-R)lk^D(+4(5J+JY
    M(+|BC7zPYLR/8KjR
    Op+8H.LWBO|<z29^%
    OF|T+lXz6PYALKDp+
    l2Uc2KzF*K<SBKG)y
    7tpcYAy29^4OFT-+d
    pcWddG+4Ucy5C^W(c
    MET+*5k.L-RR+4>f|
    pFy>#Z3P>Ldl5||.U
    qLBdpl%WO&D(MVE5F
    V5FcW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,586    20,720
    
    PeriodColumn(2) Period(18) Swap(5, 105, 3, 2) Swap(92, 52, 1, 10)
    H+M8|TB@Kz/JNbVM)
    |DR(UcFFz9<Ut*5cZ
    G+kNpcYp+2|G++|TB
    4WBO|<z29^%(5J+JY
    M(+|TC7zPYLR/8KjR
    Op+8y.L-R)Wk^D(+4
    OF7CVlXz6PYALKJp+
    l2_VFKzF*K<SBKG)y
    7t-OGAy29^4OFT-+d
    pclddG+4Ucy5C^W(c
    MEB+*5k.L-RR+4>f|
    pFH>#Z3P>Ldl5||.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20717    20393
    
    PeriodColumn(2) Period(18) PeriodRow(15)
    H+M8|CV@Kz/JNbVM)
    +B.;+B31c_81*H_Rq
    |DR(UVFFz9<Ut*5cZ
    #2pb&RG1BCOO|TfSM
    G+kNpOGp+2|G++|TB
    F;+B<MF6N:(+H*;2B
    4-R)Wk^D(+4(5J+JY
    pzOUNyBO<Sf9pl/CN
    M(+|TC7zPYLR/8KjR
    :^j*Xz6-+l#2E.B)>
    Op+8y.LWBO|<z29^%
    OF7TBlXz6PYALKJp+
    l2_cFKzF*K<SBKG)y
    7t-cYAy29^4OFT-+d
    pclddG+4Ucy5C^W(c
    MEB+*5k.L-RR+4>f|
    pFH>#Z3P>Ldl5||.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    20,716    20,391
    
    PeriodColumn(2) Period(18) Swap(5, 152, 5, 1) Swap(101, 51, 1, 1)
    H+M8|dV@Kz/JNbVM)
    |DR(UcFFz9<Ut*5cZ
    G+kNp|Gp+2|G++|TB
    %-R)WU^D(+4(5J+JY
    M(+|TF7zPYLR/8KjR
    Op+8y.LWBO|<z29^4
    OF7TBlXz6PYALKJp+
    l2_cFKzF*K<SBKG)y
    7t-cYAy29^4OFT-+C
    pclddG+4Ucy5C^W(V
    MEB+*5k.L-RR+4>fO
    pFH>#Z3P>Ldl5||.k
    qL+dpl%WO&D(MVE5C
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,712    20,632
    
    PeriodColumn(2) Period(18) Swap(5, 105, 4, 2) Swap(101, 51, 1, 1)
    H+M8|TB@Kz/JNbVM)
    |DR(UcFFz9<Ut*5cZ
    G+kNpcYp+2|G++|TB
    %-R)WddD(+4(5J+JY
    M(+|TC7zPYLR/8KjR
    Op+8y.LWBO|<z29^4
    OF7CVlXz6PYALKJp+
    l2_VFKzF*K<SBKG)y
    7t-OGAy29^4OFT-+d
    pclk^G+4Ucy5C^W(c
    MEB+*5k.L-RR+4>f|
    pFH>#Z3P>Ldl5||.U
    qL+dpl%WO&D(MVE5F
    V52cW<SVW)+k#2b^D
    4ct+c+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,710    20,609
    
    LinearSelection(114, 100) FlipVertical() FlipHorizontal() PeriodColumn(3) FlipVertical() RectangularSelection(0, 3, 7, 5) FlipVertical() FlipHorizontal() FlipHorizontal() FlipHorizontal()
    Dpz8K>HkZV+G^2O|+
    k<BO-|d7_U-B*9Y*c
    )zPH(+WWOfGcz(S/p
    T1<l|R+6+W)cLCFBL
    .BO.q|3KpT)+Cc^M2
    X:CV5y14EBCFWt>Z+
    Ff4ctlN5bA;MNS.4+
    fONB;2j+Yc8J#_F(R
    bRB.|M+2cz(+ZFVLG
    VJp+9l++7@dU^OzL<
    5|BAKRtDp6-/EYy4z
    R*4F-cJ5MBUl|T<y+
    9#|TOzS+5M26yNbK<
    +%UG&#K;c.B5q2X+F
    Rl*k2p^OdFD8F-C>(
    Mt|P4_+j5+k9zdF&/
    plVORS783+Kp^*p+2
    :+G)zBcUWLHyMZ(#J
    +#D.KNBOW<fp(%Y*)
    RlP1GH>^kL2EpV|Td
    20,276    20,710
    
    Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1])
    E4N|tU<|2+pGOpHFL
    q2+J5VM(D&OW%lNk+
    GZ#R/l+G(4+(D^pd+
    25VlRzd2#k+)WVkW)
    R-4B+-9L5/RLYPS<W
    c+tc4KLz>pK#.kz7C
    T|+(MY@.FP2z<|Ztz
    +c+;.B+VkF3H*1OBW
    L.y8+pORC5VZKL8_c
    13BR&bp2#|*U#TAYP
    6zXlBT7FO%8+(>|OO
    CB1GFM<B+;FMBRDBS
    <K*FzKFc_2l++EM|H
    +(:N6OByNUOzpH>p)
    FO4^92yAYc-t7yp9f
    S<-6zX*j^:N^C5ycU
    4+Gddlcpc(W.B)C/l
    >f|+-TbVMd;*|.UB2
    Kp)GMSf^9JqR_jK8Z
    f+J+JD^bT|+F5Ec5*
    20,710    20,572
    
    PeriodColumn(2) Period(18) Swap(2, 155, 6, 3) SwapLinear(21, 51, 22)
    H+lddCV@Kz/JNbVM)
    |DB+4-+dpk^D(+4(5
    J+JYM(2cW2|G++|TB
    *VFFz9<Ut*5cZG+H>
    #OGp+C7zPYLR/8KjR
    Opt+c.LWBO|<z29^%
    OF7TBlXz6PYALKJp+
    l2_cFKzF*K<SBKG)y
    7t-cYAy29^4OFT-+d
    pcM8|G+4Ucy5C^W(c
    MER(U5k.L-RR+4>f|
    pFkNpZ3P>Ldl5||.U
    qLR)Wl%WO&D(MVE5F
    V5+|T<SVW)+k#2b^D
    4c+8y+ztZk.#Kp+fZ
    +B.;+B31c_81*H_Rq
    #2pb&RG1BCOO|TfSM
    F;+B<MF6N:(+H*;2B
    pzOUNyBO<Sf9pl/CN
    :^j*Xz6-+l#2E.B)>
    20,630    20,706
    

    Could any of thse be headed in the right direction, or are they all false positives / local maxima?

    http://zodiackillerciphers.com

     
Posted : April 12, 2016 3:33 pm
Jarlve
(@jarlve)
Posts: 2547
Famed Member
Topic starter
 

Jarlve, did you notice that we discussed the pivots recently? Doranchak found that the pivot symbols are period 39 ( period 29 mirrored ) repeats. I was saying that it is possible that they are caused by using the same words a couple of times in a transposition, and period 29/39 maybe because there are skips or nulls in the area. Another idea is that they are an intentional clue left to show that there is a horizontal inscription/transcription. A hint that there is transposition. Either way, without the pivots, there wouldn’t be a noticeable period 39 spike.

Yes I noticed. :)

That’s very interesting, so either they are causing the period 29/39 spike directly or they are an artifact of something else, possibly sitting inside or crossing a misalignment region (period shift). Every time I try to think about the pivots my mind kinda locks up, so I try to ignore them as much as possible. It’s just, these are very hard to explain.

AZdecrypt

 
Posted : April 12, 2016 3:36 pm
Jarlve
(@jarlve)
Posts: 2547
Famed Member
Topic starter
 

I’ve gotten spikes around 20,900 for some of the transposed cipher texts. The plain texts still seem meaningless. But are the spikes significant?

To try to answer that, I created 10,000 random shuffles of Z340, ran them through azdecrypt and computed these statistics:

Could any of thse be headed in the right direction, or are they all false positives / local maxima?

Very good questions. I really wonder about that myself, bigrams also tend to increase scores etc.

AZdecrypt

 
Posted : April 12, 2016 3:43 pm
doranchak
(@doranchak)
Posts: 2614
Member Admin
 

Very good questions. I really wonder about that myself, bigrams also tend to increase scores etc.

Yes, all the +5 sigma azdecrypt scores correspond to ciphers with higher bigram counts. The cipher with the lowest bigram repeats has a sigma of 5 and 33 bigram repeats. (Compare to 25 bigram repeats for the original Z340).

http://zodiackillerciphers.com

 
Posted : April 12, 2016 5:46 pm
smokie treats
(@smokie-treats)
Posts: 1626
Noble Member
 

For the 340 I untransposed the same way (EDIT: period 19), expanded the backward P, + and B and let AZD run on progressive for a while. I got this:

Nice work. I like the idea of the 340 being transposition + wildcards. It could explain the randomization in the cycles but leaves no explanation for the pivots. Though, at the moment the pivots still seem so mysterious we might as well keep trying things that look good.

If the 340 is just a simple transposition + wildcards (period, skytale, diagonal, non-keyed regular and irregular columnar transposition etc) then a solve should be just around the corner. Expand a few of the suspected wildcards (3 or 4) and use AZdecrypt with Reddit 6-grams and about 10.000.000 iterations per.

Here is such a cipher, to be clear, transposition + wildcards. Could be any of these: (period, skytale, diagonal, non-keyed regular and irregular columnar transposition) and anywhere between 3 to 6 wildcards. Oh, and one extra step somewhere, be either flipping, mirroring or reversing the cipher. Didn’t try-hard to emulate the 340. Should prove difficult but I hope you guys could take a look at it.

jarlve_tw1.txt

kEbYYNOC6%T;[:Nj"
41?B43m!nPcMWV>JY
QBB]j$b_f.2S@I(N/
^?*%=R;NFekX<&nTo
3[hBlY$!MN<FT"EP#
BVY,NNC3><_Nbc1j^
@fTFNI/-:6klQ%O&m
Y3jjJ?.$W]S="YNNn
[CM1_VA>NRe#FXbo<
2^?!6m%/hjE;)YBST
MN3cjJPnfV>.Fb%N<
Q*,Nj2)BB@&]I4M$k
YT[lY=!P4S"1B3/)-
Re<CT6NO;3n#BV,_m
@JFF<NNlFSF^oI4Xk
]ANFh>bYY"TQEC-32
c;jjNn1OQ6jmf<[NB
/&#T*.!?%M3=R*J*S
)$]PBj_lY*"@YINek
1N[o&h<VE>bTcj!3P

1  2  3  4  4  5  6  7  8  9  10 11 12 13 5  14 15
16 17 18 19 16 20 21 22 23 24 25 26 27 28 29 30 4
31 19 19 32 14 33 3  34 35 36 37 38 39 40 41 5  42
43 18 44 9  45 46 11 5  47 48 1  49 50 51 23 10 52
20 12 53 19 54 4  33 22 26 5  50 47 10 15 2  24 55
19 28 4  56 5  5  7  20 29 50 34 5  3  25 17 14 43
39 35 10 47 5  40 42 57 13 8  1  54 31 9  6  51 21
4  20 14 14 30 18 36 33 27 32 38 45 15 4  5  5  23
12 7  26 17 34 28 58 29 5  46 48 55 47 49 3  52 50
37 43 18 22 8  21 9  42 53 14 2  11 59 4  19 38 10
26 5  20 25 14 30 24 23 35 28 29 36 47 3  9  5  50
31 44 56 5  14 37 59 19 19 39 51 32 40 16 26 33 1
4  10 12 54 4  45 22 24 16 38 15 17 19 20 42 59 57
46 48 50 7  10 8  5  6  11 20 23 55 19 28 56 34 21
39 30 47 47 50 5  5  54 47 38 47 43 52 40 16 49 1
32 58 5  47 53 29 3  4  4  15 10 31 2  7  57 20 37
25 11 14 14 5  23 17 6  31 8  14 21 35 50 12 5  19
42 51 55 10 44 36 22 18 9  26 20 45 46 44 30 44 38
59 33 32 24 19 14 34 54 4  44 15 39 4  40 5  48 1
17 5  12 52 51 53 50 28 2  29 3  10 25 14 22 20 24

I am interested and will work on it.

 
Posted : April 12, 2016 9:38 pm
smokie treats
(@smokie-treats)
Posts: 1626
Noble Member
 

So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.

Lets say we have a + symbol with count of 24. EDIT: And we think that the + is a member of more than one cycle because it is high count but doesn’t seem to cycle well with any other symbols.

Start with making the symbol into two new symbols:

ABABABABABABABABABAB

And lets say the period is x=19. Calculate the sum of the scores for the period 1x, 2x, 3x, 4x, 5x and 6x repeats. Then make a two or three changes:

AABBABABABABABABABAB

Then calculate the sum of the scores for the period 1x – 6x repeats again. If the sum of the scores is higher, then keep the change. Otherwise, go back to the prior iteration. Repeat.

EDIT: Also do this with three possible symbols, ABC, four possible symbols, ABCD, etc. Use this method to figure out how many symbols the poly symbol should be segregated into.

OR, use the same process to maximize the cycle scores.

I suppose that which one works better may depend on the randomization of the cycles. But fortunately, the 340 is fairly cyclic.

I am thinking of a way to do this with my spreadsheets, and I think that I may be able to do it. I am wondering if the correct segregation of poly symbols would be beneficial as opposed to just expanding all of the poly symbols, considering a close but imperfect untransposition.

 
Posted : April 13, 2016 3:16 am
smokie treats
(@smokie-treats)
Posts: 1626
Noble Member
 

For tw1, I have five high count symbols that could be 1:1 or poly:

4, 5, 14, 19 and 47.

If I expand all of them, multiplicity will be 0.371.

 
Posted : April 13, 2016 4:29 am
Jarlve
(@jarlve)
Posts: 2547
Famed Member
Topic starter
 

So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.

That seems like a fairly difficult approach and I’m not sure if it will work.

As you may have seem I’ve come up with a new and simple measurement I’ve called flatness which measures how flat a distribution of frequencies are. If a cipher 10 characters long has 5 unique symbols each having a count of 2 then it is considered perfectly flat. Simply sum the difference of each unique symbol versus the average ABS(340/63-symbol_frequency) and add normalization.

Something interesting between the 408 and 340 can be noted in this regard. While the 408 is more cyclic than the 340 it is also flatter.

Full 408: 108.8
Full 340: 144.9

So, okay, perhaps the "+" symbol is causing the difference.

340 without "+" symbol: 132.8

Hmmm it is still higher, maybe more wildcards?

340 without "+,p,B" symbols: 130.6

Still higher, let’s remove all symbols with a frequency higher than 9.

340 without symbols frequency > 9: 130.0

It persists. There is something fundamental about the 340 that is causing it to be less flat than the 408. Can it be linked to the 340 being less cyclic than the 408?

AZdecrypt

 
Posted : April 13, 2016 11:31 am
smokie treats
(@smokie-treats)
Posts: 1626
Noble Member
 

So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.

That seems like a fairly difficult approach and I’m not sure if it will work.

It probably won’t work by maximizing the repeat scores. There wouldn’t be any new repeats, and the segregation would probably not be correct. You could have +19X +19X +19Y +19Y. The method should result in AX AX BY BY, but that isn’t necessarily the segregation.

I am not so sure about the cycle approach either but still thinking about it.

 
Posted : April 13, 2016 1:51 pm
(@mr-lowe)
Posts: 1197
Noble Member
 

smokie/doranchak ..i have been playing around with smokies partial solve trying to find misalignment patterns.. i put it on a spreadsheet and came up with some more interesting words and mini sentences..i had to manipulate some letters.. but tried to to keep it in context.. i will post it up in a few days. i have also been using doranchaks cool period calculator trying to find a link between pivots and periods….and it got me to think that it would be interesting if we could drop "solves" in plaintext into the period calculator and then run through period manipulation to see if we can get better solutions.
doranchak do you think it has any value.

 
Posted : April 13, 2016 3:34 pm
doranchak
(@doranchak)
Posts: 2614
Member Admin
 

I am not sure. That partial solve also includes some wildcard expansion so that aspect would have to be incorporated into the period calculator as well. But then there are many other possible manipulations that can be performed prior to deriving a candidate plaintext. It would get very complicated to code up for the period calculator. I think it may be more fruitful to use azdecrypt for that, since Jarlve has already worked on putting a wide variety of manipulations into the solver. The difference, though, is that the solver doesn’t have a "hands on" mode for visualizing the manipulations and plaintext while it is running through possibilities. Jarlve, maybe you can say what you think about adding something like that.

http://zodiackillerciphers.com

 
Posted : April 13, 2016 3:53 pm
(@mr-lowe)
Posts: 1197
Noble Member
 

doranchak yes it is the visual aspect that i am looking for and then manually manipulate …instead of numerics in the calculator the letters get locked in to the cell position and move around the same way as they do in the calculator now. using solves that have some merit change the periods through trying to align better…

 
Posted : April 13, 2016 4:14 pm
smokie treats
(@smokie-treats)
Posts: 1626
Noble Member
 

I have a lot of irons in the fire with this project.

Another one is to try to find a cipher other than route transposition that would cause period 15/19 repeats. Daikon discussed bifid briefly and questioned why the period would be 38. I have been trying to figure out how a bifid ciopher causes period x/2 repeats. Perhaps I should add to my list making a message with period 30 , and then transcribe right left top bottom to see what would happen. To see if I can use bifid to create a message that has as many period 15/19 repeats as the 340. I understand how the cipher works, but not how the period repeats are created. Maybe doing it will help me understand.

Still working on tw1, expanded 4, 5, 14, 19 and 47 and untransposed period 14 transcription left right top bottom and right left bottom top. A lot of variance and no solve.

 
Posted : April 14, 2016 4:26 am
Jarlve
(@jarlve)
Posts: 2547
Famed Member
Topic starter
 

I am not sure. That partial solve also includes some wildcard expansion so that aspect would have to be incorporated into the period calculator as well. But then there are many other possible manipulations that can be performed prior to deriving a candidate plaintext. It would get very complicated to code up for the period calculator. I think it may be more fruitful to use azdecrypt for that, since Jarlve has already worked on putting a wide variety of manipulations into the solver. The difference, though, is that the solver doesn’t have a "hands on" mode for visualizing the manipulations and plaintext while it is running through possibilities. Jarlve, maybe you can say what you think about adding something like that.

I’m not sure what you mean/guys are asking for. The program does output mostly everything including the manipulated ciphertext, plaintext and the operation and its settings. So it does visualize the manipulation and plaintext. I’m willing to look into anything if it makes sense to me within the programs concept.

Are you asking for a ZKDecrypto style solver where you can input operations manually, sort of a Photoshop for ciphers?

AZdecrypt

 
Posted : April 14, 2016 11:06 am
Page 74 / 96
Share: