Doaranchak..Yes I see ..right you are.. .. Lots of palindromes within a larger word group or sentence……….but I like the word racecar as a Z word..
When running azdecrypt on manipulations of Z340, I like to use the same settings (30 restarts, 1,000,000 iterations) each time so I can compare the resulting scores. Unmanipulated, Z340 tends to score around 20,327.
I’ve gotten spikes around 20,900 for some of the transposed cipher texts. The plain texts still seem meaningless. But are the spikes significant?
To try to answer that, I created 10,000 random shuffles of Z340, ran them through azdecrypt and computed these statistics:
- Min score: 19356
- Max score: 20473
- Mean score: 19880
- Score Std Dev: 165
- Min ioc: 652.0
- Max ioc: 858.0
- Mean ioc: 747
- ioc Std Dev: 29
[/list:u:3nw63mde]
Based on those stats, the unmanipulated Z340 already produces an azdecrypt score at a statistical significance level of 2.7 sigma (2.7 times one standard deviation) compared to the 10,000 random shuffles.
The best score I’ve seen in my experiments was 20,918 which has a statistical significance level of 6.3 sigma. So, here are all the manipulations I’ve found so far that score at 5 sigma or higher, in either the forward or backward reading direction:
Key: First line is the set of manipulations. Then the resulting cipher text is shown, followed by the azdecrypt scores in the forward and reverse reading directions.
PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(16, 1, 4, 4) Rotate(1) RectangularSelection(19, 8, 1, 8) PeriodColumn(7) SwapLinear(196, 261, 36) Swap(6, 155, 4, 10) HTEGR2F-kCdcW<7tL B#yz:HYWD%O#JRBfL _&94Mkp3V*8lf|()+ #.5z+L2V8H.c25^2V dA<6M4+Kb+ZR2FBcy UT+MRK/pltE|DYBpb z(6;98SM+#+N|5FBc yZB5X-1zt:49CE>VU RBc|T)+LL16C<+FlW |*>dO5^VPk|1B_YOB <.cJRyUZGW()+Kp*N +O+/+*jd|5FPFlBc& <+K|q%;2UcXG+N+Ft G4lfOS^.(KFL2@G+( <7pO+J^+V-UylBzF- .M4T5*^7KpRp+SFkC d*-OlBz^DR28>pzYN _+O#jf9J(23G.qcM| TZOpbcWzCpW))(+/+ AzPO4SkpN|+H;DKM> 20,516 20,918 PeriodColumn(2) Period(18) Swap(202, 104, 8, 1) H+M8|CV@Kz/JNbVM) |DR(UVFFz9<Ut*5cZ G+kNpOGp+2|G++|TB 4-R)Wk^D(+4(5J+JY M(+|TC7zPYLR/8KjR Op+8y.LWBO|<z29^% OF.TBlXz6PYALKJp+ l25cFKzF*K<SBKG)y 7t^cYAy29^4OFT-+d pcfddG+4Ucy5C^W(c MER+*5k.L-RR+4>f| pFS>#Z3P>Ldl5||7U qL2dpl%WO&D(MVE_F V5CcW<SVW)+k#2b-D 4ct+c+ztZk.#Kp+lZ +B.;+B31c_81*H_Bq #2pb&RG1BCOO|TfHM F;+B<MF6N:(+H*;+B pzOUNyBO<Sf9pl/2N :^j*Xz6-+l#2E.B)> 20,900 20,569 LinearSelection(33, 18) Diagonal(1) PeriodColumn(2) Period(18) PeriodRow(8) H+c8|CV@Kz/JNbVM) 7t-cYAy29^4OFT-+d #2pb&RG1BCOO|TfSM |DR(+VFFz9<Ut*5cZ p:lddG+4Ucy5C^W(c F;+B<MF6N:(+H*;2B G+kNpOZp+2|G++|TB MEBM*5k.L-RR+4>f| pzOUNyBO<Sf9pl/CN 4-R)Wk^DW+4(5J+JY pFH>#U3P>Ldl5||.U y^j*Xz6-+l#2E.B)> M(+|TC7zPY)R/8KjR qL+dpl%GO&D(MVE5F Op+8y.LWBO|<#29^% V52cW<SVW(+k#2b^D OF7TBlXz6PYALKHp+ 4ct+c+ztZk.LKp+fZ l2_cFKzF*K<SBKG)J +B.;+B31c_81*z_Rq 20,859 20,480 SwapLinear(34, 85, 15) Quadrants(9, 4, 3, 0, 4 [0, 0, 0, 0, 0, 0, 1, 0, 0]) HER>Np+Bp8R^Spp7_ 9M+By:c#5+K(G2Jd< M+Ulz-/R+Ulc<2S96 zNFGl1XBy3.c|+TcR W)++dkF|HDM>V+^J+ Op7<FBy-5tE|DYBpb TMKORJ|*5T4M.+&BF y#+N|5FBc(;8R^f52 4b.cV4t++*:49CE>V UZ5-+zBK(Op^.fMqG 2L16C<+FlWB|)LCzW cPOSHT/()pW<7tB_Y OB*-CcNpkSzZO8A|K ;+pl^VPk|1LTG2d(# O%DWY.<*Kf)FlO-*d CkF>2HJ^l8*V3pO++ RK2ztjd|5FP+&4k/M +UZGW()L#zD(q%;2U cXGV.zL|fj#O+_NYz +@L9b+ZR2FBcyA64K 20,258 20,845 LinearSelection(131, 86) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5) HER>pl^VPk|1LTG2d Np+B(#O%DWY.<*Kf) By:cM+UZGW()L#zHJ Spp7^l8*V3pO++RK2 _9M+ztjd|5FP+&4k/ p8R^FlO-*dCc<2OB( #5+Kq%;2UcXzF&M+| (G2Jfj#O+_N^f524p 7c46AyBpByB*:49CD +2|JRE^Zt++zBK(O+ RlM+z<U-d-KL16C<* |JRlkF>2DKBCzWcP# yS96GV.zLTc.b(;8R lGFNYL@+zb.cV4t++ yBX1F<YOFE>VUZ5-+ |c.35Vb/Up^.fMqG2 RcT+9M4T5+FlWB|)L ++)WF5|N+OSHT/()p |FkdW<7tB_YOB*-Cc >MDHNpkSzZO8A|K;+ 20,456 20,844 PeriodColumn(2) Period(18) SwapLinear(5, 105, 99) Swap(20, 64, 7, 2) H+M8|TBlXz6PYALKJ p+l5CcFKzF*K<SBKG )y7R+cYAy29^4OFT- +dpl5ddG+4Ucy2_^W (cMM)+*5k.L-Rt-4> f|pcZ>#Z3P>Ldcl|| .U7TB@Kz/JNbVEB|D R(UJYFz9<Ut*5FHG+ kNpOGp+2|G++|CV4- R)Wk^D(+4(5J+VFM( +|TC7zPYLR/8KjROp +8y.LWBO|<z29^%OF qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,842 20,550 LinearSelection(131, 103) Quadrants(3, 8, 1, 0, 1639 [0, 3, 0, 3, 0, 0, 1, 1, 1]) FlipVertical() SwapLinear(96, 59, 13) Quadrants(10, 3, 4, 0, 12 [0, 0, 0, 0, 0, 1, 1, 0, 0]) DM>kF|)++TcRM&;XB yL)|f52RJ|Z^ERJ|2 +DFOYBpBc7U-yBF<l z-K46Ay9L@+zYN_+O #jfJ|Lz.VGXcU2;%q K(D2>FkCd*-OlF^/k 4&+PF5|djtz+2KR++ Op3V*8l^7JHz#L)(W GZU+Mc)fK*<.YWD%O #(Bd2GTL1|kPV^lp> HNpkSzZO8A|K;+dW< 7tB_YOB*-CcWCzWcP OSHT/()p+L16CVUZ5 -+8BK(zBK(Op^.fMq G21*:49CE><+FlWB| c.3+TVc.b4t++^NF9 cG6<lz2RFOlBF5|N+ #ySc.b4t++5Vb/U+M 4T5*+Rpd<M(G2#5+p 8R_9MSppBy:Np+HER 20,635 20,824 LinearSelection(131, 103) Quadrants(3, 4, 1, 0, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5) PeriodRow(8) HER>pl^VPk|1LTG2d 6AyyBF<p7cB*:49CD RcT+9M4T5+FlWB|)L Np+B(#O%DWY.<*Kf) +2|JRE^Zt++zBK(O+ ++)W|N+#yOSHT/()p By:cM+UZGW()L#zHJ RlM+z<U-d-KL16C<* |FkdW<7tB_YOB*-Cc Spp7^l8*V3pO++RK2 |JRlkF>2DF5CzWcPS >MDHNpkSzZO8A|K;+ _9M+ztjd|5FP+&4k/ 96zFGV.zL5f^NFGlR p8R^FlO-*dCc<2OB( 8BK;YL@+zVc.b4t++ #5+Kq%;2UcXc.b42| yBX1pBYOFE>VUZ5-+ (G2Jfj#O+_N&M(+T4 |c.35Vb/Up^.fMqG2 20,822 20,578 Period(19) FlipHorizontal() Quadrants(3, 3, 11, 1, 2281 [1, 0, 1, 3, 0, 1, 0, 0, 1]) FlipVertical() *KGfJ_8+Jb+E*|M|) S9RKf+^|55.VfBWlT jZJDTFcUb>.(/-;2) 4+GddlcpcC+dBpM^q S<-6zX*j^:N^C5ycU FO4^92yAYc-t7yp9f H>pH+(:N6OByNUOzp +EMBS<K*FzKFc_2l+ MBR|OOCB1GFM<B+;F 8+(TAYP6zXlBT7FO% |*UKL8_c13BR&bp2# C5VH*1OBWL.y8+pOR VkF2z<|Ztz+c+;.B+ @.FpK#.kz7CT|+(MY KLz5/RLYPS<Wc+tc4 +-92#k+)WVkW)R-4B lRz+G(4+(D^pd+25V #R/VM(D&OW%lNk+GZ 2+JtU<|2+pGOpHFLq E4N|5ldL>P3Z#>D|) 20,820 20,466 PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(18, 7, 2, 7) Reverse() SwapLinear(196, 261, 47) SwapLinear(6, 155, 72) HTEGR2F-kCdcW<7tB _YOB<.YWD%O#JRBf+ Kp*N+Op3V*8lf|()F lBc&<+2Vc.b425^2+ N+FtG4lf.^ZR2FBcy UT+MRK/pltE|DYBpb z(6;98SM+#+N|5FBc yZB5X-1zt:49CE>VU RBc|T)+LL16C<+FlW |*>dO5^VPk|1LB#yz :HcJRyUZGW()L_&94 Mk+/+*jd|5FP+#.5z +LK|q%;2UcXGVdA<6 M4+Kb+pO(KF(23G.q cM|THJ^+V-UylBzF- .M4T5*^7KpRp+SFkC d*-OlBz^DR28>pzYN _+O#jf9JL2@G+(<7p O+SOPcWKD;H+Np+/+ A8OZzSk())WpCzM|> 20,818 20,653 Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2314 [1, 0, 2, 0, 0, 1, 0, 1, 0]) PeriodRow(12) E4N|tU<|2+pGOpHFL <K*FzKFc_2l++EM|H q2+J5VM(D&OW%lNk+ +(:N6OByNUOzpH>p) GZ#R/l+G(4+(D^pd+ FO4^92yAYc-t7yp9f 25VlRzd2#k+)WVkW) S<-6zX*j^:N^C5ycU R-4B+-9L5/RLYPS<W 4+Gddlcpc(W)B.C/l c+tc4KLz>pK#.kz7C |f>+-TMVbd;*U.|B2 T|+(MY@.FP2z<|Ztz Kp)GMSf^9JqR_jK8Z +c+;.B+VkF3H*1OBW f+J+JD^bT|+F5Ec5* L.y8+pORC5VZKL8_c 13BR&bp2#|*U#TAYP 6zXlBT7FO%8+(>|OO CB1GFM<B+;FMBRDBS 20,811 20,594 PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(18, 7, 1, 7) Shift(5, 6) SwapLinear(196, 261, 59) Swap(6, 155, 5, 10) Shift(0, 324) dA<6M4lf.^pO(KF(y UT+MRK/pltE|DYBpb z(6;98SM+#+N|5FBc yZB5X-1zt:49CE>VU RBc|T)+LL16C<+FlW |*>dO5^VPk|1B_YOB <.cJRyUZGW()+Kp*N +O+/+*jd|5FPFlBc& <+K|q%;2UcXG+N+Ft G4+Kb+ZR2FBc23G.q cM|THSOPcW(zCpW)) .M4T5*^7KpRp+SFkC d*-OlBz^DR28>pzYN _+O#jf9JL2@G+(<7p O+J^+V-UylBzF-+/+ A8OZzSkpN+H;DKM|> HTEGR2F-kCdcW<7tL B#yz:HYWD%O#JRBfL _&94Mkp3V*8lf|()+ #.5z+L2Vc.b425^2V 20,396 20,805 PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(16, 1, 4, 4) Rotate(1) RectangularSelection(18, 8, 1, 8) Rotate(3) SwapLinear(196, 261, 35) Swap(6, 155, 4, 10) HTEGR2F-kCdcW<7tL B#yz:HYWD%O#JRBfL _&94Mkp3V*8lf|()+ #.5z+L2V8H.c25^2V dA<6M4+Kb+ZR2FBcy UT+MRK/pltE|DYBpb z(6;98SM+#+N|5FBc yZB5X-1zt:49CE>VU RBc|T)+LL16C<+FlW |*>dO5^VPk|1B_YOB <.cJRyUZGW()+Kp*N +O+/+*jd|5FPFlBc& <+K|q%;2UcXG+N+Ft G4lfOS^.(KJL2@G+( <7pO+J^+V-UylBzF- .M4T5*^7KpRp+SFkC d*-OlBz^DR28>pzYN _+O#jf9F(23G.qcM| TZOpbcWz/+())WpC+ AzPO4SkpN+H;DKM|> 20,803 20,685 PeriodColumn(13) Snake() Swap(8, 177, 6, 2) PeriodRow(2) RectangularSelection(15, 1, 4, 4) Rotate(1) RectangularSelection(18, 7, 2, 7) Shift(5, 12) SwapLinear(196, 261, 47) Swap(6, 155, 4, 10) HTEGR2F-kCdcW<7tL B#yz:HYWD%O#JRBfL _&94Mkp3V*8lf|()+ #.5z+L2VS^.425^2V dA<6M4+Kb+ZR2FBcy UT+MRK/pltE|DYBpb z(6;98SM+#+N|5FBc yZB5X-1zt:49CE>VU RBc|T)+LL16C<+FlW |*>dO5^VPk|1B_YOB <.cJRyUZGW()+Kp*N +O+/+*jd|5FPFlBc& <+K|q%;2UcXG+N+Ft G4lfOpbT(KF(23G.q cM|TPJ^+V-UylBzF- .H.cM*^7KpRp+SFkC d*-OlBz^DR28>pzYN _+O#jf9JL2@G+(<7p O+O45cW)(zCpW)+/+ A8OZzSkDKpN+H;M|> 20,685 20,791 PeriodColumn(2) Period(18) SwapLinear(5, 105, 100) Swap(20, 79, 3, 2) H+M8|TBlXz6PYALKJ p+l-RcFKzF*K<SBKG )y7LdcYAy29^4OFT- +dpbVddG+4Ucy5C^W (cMEB+*5k.L2_R+4> f|pFH>#Z3P>t-l5|| .UqCV@Kz/JNclM)|D R(UVFFz9<Ut*5cZG+ kNpOGp+2|G++|TB4- R)Wk^D(+4(5J+JYM( +|TC7zPYLR/8KjROp +8y.LWBO|<z29^%OF 7L+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,791 20,418 PeriodColumn(2) Period(18) SwapLinear(6, 104, 82) Swap(165, 238, 3, 2) H+M8|C7TBlXz6PYAL KJp+l2_cFKzF*K<SB KG)y7t-cYAy29^4OF T-+dpclddG+4Ucy5C ^W(cMEB+*5k.L-RR+ 4>f8y.LWBO|<z29^% OFV@Kz/JNbVM)|DR( UVFFz9<Ut*5cZG+kN pOGp+2|G++|TB4-R) Wk^D(+4(5J+J4c(+| TC7zPYLR/8Kj+Bp+| pFH>#Z3P>Ldl#2|.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D YMt+c+ztZk.#Kp+fZ RO.;+B31c_81*H_Rq 5|pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,782 20,611 LinearSelection(131, 103) Quadrants(3, 8, 1, 0, 1639 [0, 3, 0, 3, 0, 0, 1, 1, 1]) SwapLinear(95, 58, 22) Quadrants(10, 3, 0, 0, 9 [0, 0, 0, 0, 0, 1, 0, 0, 1]) REH+pN:yBppS%qKR8 p2KR2G(M<dpR+>pl^ VPk|1LTG2dB(#O%DW Y.<*Kf)cM+UZGW()L #zHJ7^l8CkF>2D(#5 +;2UcXGV.z+&4k/^F lO-*d*V3pO++_9M+z tjd|5FPL|Jfj#O+_N Yz+@L9yA64K-zl<FB y-U7cBpBYOFD+2|JR E^Z|JR25f8BKyBX|c .RcT++)|Fk>MD*5T4 M+U/bV5++t4b.cSy# +N|5FBlOFR2zl<6Gc 9FN^++t4b.cVT+(M& ;+-5ZUV>EC94:*12G qMf.^pO(KBz3L)|BW lF+<C61L+p)(/THSO PcWzCWcC-*BOY_Bt7 <Wd+;K|A8OZzSkpNH 20,778 20,440 PeriodColumn(2) Period(18) Swap(12, 104, 6, 1) Swap(101, 238, 1, 1) H+M8|CV@Kz/J7bVM) |DR(UVFFz9<U_*5cZ G+kNpOGp+2|G-+|TB 4-R)Wk^D(+4(lJ+JY M(+|TC7zPYLRB8KjR Op+8y.LWBO|<H29^4 OFNTBlXz6PYALKJp+ l2tcFKzF*K<SBKG)y 7t+cYAy29^4OFT-+d pc5ddG+4Ucy5C^W(c ME/+*5k.L-RR+4>f| pFz>#Z3P>Ldl5||.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D %ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,538 20,770 PeriodColumn(2) Period(18) Swap(12, 131, 7, 1) SwapLinear(92, 52, 9) H+M8|CV@Kz/JBbVM) |DR(UVFFz9<UF*5cZ G+kNpOGp+2|GC+|TB 4WBO|<M29^4(+J+JY M(+|TC7zPYLR58KjR Op+8y.L-R)Wk^D(+% OF7TBlXz6PYA#KJp+ l2_cFKzF*K<SNKG)y 7t-cYAy29^4OtT-+d pclddG+4Ucy5+^W(c MEB+*5k.L-RR54>f| pFH>#Z3P>Ldl/||.U qL+dpl%WO&D(zVE5F V52cW<SVW)+kL2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,761 20,645 PeriodColumn(2) Period(18) Swap(4, 104, 10, 1) SwapLinear(101, 238, 55) H+M87CV@Kz/JNbVM) |DR(_VFFz9<Ut*5cZ G+kN-OGp+2|G++|TB 4-R)lk^D(+4(5J+JY M(+|BC7zPYLR/8KjR Op+8H.LWBO|<z29^4 cY+c+ztZk.#Kp+fZ+ Bd;+B31c_81*H_Rq# 2pb&RG1BCOO|TfSMF ;+Bd.G+4Ucy5C^W(c MET+*5k.L-RR+4>f| pFy>#Z3P>Ldl5||.U qLBdpl%WO&D(MVE5F V5FcW<SVW)+k#2b^D %OF|T+lXz6PYALKJp +l2Uc2KzF*K<SBKG) y7tpctAy29^4OFT-+ dpcW<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,692 20,761 PeriodColumn(2) Period(18) Swap(5, 63, 10, 2) H+M8|5J@Kz/JNbVM) |DR(U/8Fz9<Ut*5cZ G+kNpz2p+2|G++|TB 4-R)WLKD(+4(CV+JY M(+|TBKzPYLRVFKjR Op+8yFTWBO|<OG9^% OF7TBC^z6PYAk^Jp+ l2_cF+4F*K<SC7G)y 7t-cY5|29^4O.L-+d pclddMV4Ucy5lXW(c MEB+*5k.L-RRKz>f| pFH>#Z3P>LdlAy|.U qL+dpl%WO&D(G+E5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,757 20,429 PeriodColumn(2) Period(18) Swap(5, 148, 6, 2) H+M8|FT@Kz/JNbVM) |DR(UC^Fz9<Ut*5cZ G+kNp+4p+2|G++|TB 4-R)W5|D(+4(5J+JY M(+|TMVzPYLR/8KjR Op+8y#2WBO|<z29^% OF7TBlXz6PYALKJp+ l2_cFKzF*K<SBKG)y 7t-cYAy29^4OCV-+d pclddG+4Ucy5VFW(c MEB+*5k.L-RROG>f| pFH>#Z3P>Ldlk^|.U qL+dpl%WO&D(C7E5F V52cW<SVW)+k.Lb^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,756 20,657 LinearSelection(220, 116) PeriodColumn(6) PeriodRow(3) Swap(58, 86, 4, 1) HER>pl^VPk|1LTG2d Spp7^l8*V3pO++RK2 #5+Kq%;2UcXGV.zL| -zlUV+^.+Op7<FBy- z69Sy#+O|5FBc(;8R BJ|Kfc(p.Oq3pGz^2 <N|7BFt9kB-d_CWYc NM+B(#O%DWY.<*Kf) _*M+ztjd|5FP+&4k/ (G2Jfj#O+_NYz+@L9 U+R/5tE|DYBpbTMKO fcl5VG24F4tNb+^.+ 1lR6WcCBT<|++)LFL p8>kAMSDzHZNO|K;+ By:cM+UZGW()L#zHJ p8R^FlO-*dCkF>2D( d<M+b+ZR2FBcyA64K 2<clRJ|*5T4M.+&BF :Vy4UB9ZXC51E-*>+ zH+WT+c/)P(WO)CSp 20,753 20,484 Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1]) LinearSelection(17, 299) PeriodRow(12) SwapLinear(108, 205, 32) E4N|tU<|2+pGOpHFL q2+J5VM(D&OW%lNk+ +(:N6OByNUOzpH>p) GZ#R/l+G(4+(D^pd+ FO4^92yAYc-t7yp9f 25VlRzd2#k+)WVkW) S<-6zXp)GMSf^9J+c +;.B+VkF3H*1OBWL. y8+pdlcpc(W.B)C/l c+tc4KLz>pK#.kz7C >f|+-TbVMd;*|.UB2 T|+(MY@.FP2z<|Ztz K*j^:N^C5ycUR-4B+ -9L5/RLYPS<W4+GdO RC5VZKL8_c13BR&bp 2#|*U#TAYP6zXlBT7 FO%8+(>|OOCB1GFM< B+;FMBRDBS<K*FzKF c_2l++EM|HqR_jK8Z f+J+JD^bT|+F5Ec5* 20,507 20,748 PeriodColumn(2) Period(18) Swap(5, 148, 6, 2) SwapLinear(36, 95, 25) H+M8|FT@Kz/JNbVM) |DR(UC^Fz9<Ut*5cZ G+|<z29^%OF7TBlXz 6PYALKJp+l4(5J+JY M(+|TMVzPYLR/8KjR Op+8y#2WBOkNp+4p+ 2|G++|TB4-R)W5|D( +2_cFKzF*K<SBKG)y 7t-cYAy29^4OCV-+d pclddG+4Ucy5VFW(c MEB+*5k.L-RROG>f| pFH>#Z3P>Ldlk^|.U qL+dpl%WO&D(C7E5F V52cW<SVW)+k.Lb^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,733 20,746 LinearSelection(131, 103) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) Swap(96, 191, 7, 5) PeriodRow(8) HER>pl^VPk|1LTG2d 7c46AyBpByB*:49CD RcT+9M4T5+FlWB|)L Np+B(#O%DWY.<*Kf) +2|JRE^Zt++zBK(O+ ++)WBF5|NOSHT/()p By:cM+UZGW()L#zHJ RlM+z<U-d-KL16C<* |FkdW<7tB_YOB*-Cc Spp7^l8*V3pO++RK2 |JRlkF>2DBKCzWcP+ >MDHNpkSzZO8A|K;+ _9M+ztjd|5FP+&4k/ #yS9GV.zLMc.b425f p8R^FlO-*dCc<2O8( ^NFGYL@+zVc.b4t++ #5+Kq%;2UcX6zF;&| yBX1F<YOFE>VUZ5-+ (G2Jfj#O+_NlR(+Tp |c.35Vb/Up^.fMqG2 20,669 20,746 PeriodRow(3) Swap(54, 97, 9, 2) Swap(83, 19, 4, 2) HER>pl^VPk|1LTG2d Sp8R^l8*V3pO++RK2 #5G2q%;2UcXGV.zL| -zCcM+^J+Op7<FBy- z6f)*#+N|5FBc(;p7 |c.<*BK(Op^.UVq+K |Fk+&<7tB_YOSy-lf Np+z+#O%DWY.3zK9B _9MbTtjd|5FPdW4k/ (G2V4j#O+_NYB(@L9 U+RWBtE|DYBp+zMKO lGFA|f524b.cJft++ RcT+L16C<+Fl/5|)L >MDHNpkSzZO8N^K;+ By:cM+UZGW()L#zHJ p8R^FlO-*dCkF>2D( d<M+b+ZR2FBcyA64K 2<clRJ|*5T4M.+&BF yBX1*:49CE>VUZ5-+ ++)WCzWcPOSHT/()p 20,630 20,736 PeriodColumn(13) Snake() Swap(8, 177, 7, 3) PeriodRow(2) RectangularSelection(18, 7, 2, 7) Shift(3, 10) SwapLinear(196, 261, 47) Swap(6, 155, 5, 11) HTEGR2F-kCdcW<7tB B#yz:HYWD%O#JRFf+ _&94Mkp3V*8lf|()B #.5z+L2Vc.b425^27 dA<6M4lf.^pO(KF(^ UT+MRK/pl^E|DYBpb z(6;98SM+U+N|5FBc yZB5X-1ztj49CE>VU RBc|T)+q%;6C<+FlW |*>dO5tVPk|1L_YOB <.cJRy#ZGW()LKp*N +O+/+*:d|5FP+lBc& <+K|LL12UcXGVN+Ft G4+Kb+ZR2FBcy3G.q cM|THJ^+V-UylBzF- .M4T5*^+KpRp+SFkC d*-OlBz2DR28>pzYN _+O#jf9JL2@G+(<7p O+SOPcW))(zCpW+/+ A8OZzSk;DKpN+HM|> 20,513 20,732 PeriodColumn(2) Period(18) Swap(12, 105, 8, 1) Swap(101, 238, 3, 1) H+M8|CV@Kz/JTbVM) |DR(UVFFz9<Uc*5cZ G+kNpOGp+2|Gc+|TB 4-R)Wk^D(+4(dJ+JY M(+|TC7zPYLR+8KjR Op+8y.LWBO|<>29^4 OF7NBlXz6PYAdKJp+ l2_tFKzF*K<ScKG)# 7t-+YAy29^4OFT-+d pcl5dG+4Ucy5C^W(c MEB/*5k.L-RR+4>f| pFHz#Z3P>Ldl5||.U qL+Lpl%WO&D(MVE5F V52BW<SVW)+k#2b^D %ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq y2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,483 20,724 Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1]) LinearSelection(17, 293) PeriodRow(12) E4N|tU<|2+pGOpHFL q2+J5VM(D&OW%lNk+ +(:N6OByNUOzpH>p) GZ#R/l+G(4+(D^pd+ FO4^92yAYc-t7yp9f 25VlRzd2#k+)WVkW) S<-6zX*j^:N^C5ycU R-4B+-9L5/RLYPS<W 4+Gddlcpc(W.B)C/l c+tc4KLz>pK#.kz7C >f|+-TbVMd;*|.UB2 T|+(MY@.FP2z<|Ztz Kp)G+c+;.B+VkF3H* 1OBWL.y8+pORC5VZK L8_c13BR&bp2#|*U# TAYP6zXlBT7FO%8+( >|OOCB1GFM<B+;FMB RDBS<K*FzKFc_2l++ EM|HMSf^9JqR_jK8Z f+J+JD^bT|+F5Ec5* 20,358 20,724 PeriodColumn(2) Period(18) Swap(5, 104, 6, 8) H+M8|7TBlXz6PbVM) |DR(U_cFKzF*K*5cZ G+kNp-cYAy29^+|TB 4-R)WlddG+4UcJ+JY M(+|TB+*5k.L-8KjR Op+8yH>#Z3P>L29^% OFCV@Kz/JNYALKJp+ l2VFFz9<Ut<SBKG)y 7tOGp+2|G+4OFT-+d pck^D(+4(5y5C^W(c MEC7zPYLR/RR+4>f| pF.LWBO|<zdl5||.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,722 20,621 FlipHorizontal() Period(15) PeriodRow(10) dEB+*5k.L(MVE5FV5 B<MF<Sf9pl/C|DPYL 2c+ztZ2H+M8|CV@K< R/9^%OF7TB29^4OFT Ut*5cZG|TC7zG)pcl -+MVW)+k_Rq#2pb&R ddG+4dl5||.UqLcW< 6N:(+H*;>^D(+4(8K STfN:^j*Xz6-z/JNb jROp+8zF*K<SBKl%W VM)R)WkLKJy7t-cYA O&Dp+fZ+B.;+G1BCO y-RR+4>f|p+dp1*HB O|pOGp+2|5J+JYM(+ pzOUNyBO+l#2E.B)+ lXz6PYA>#Z3P>L#2b kN|<z2p+l2_cFKUcy ^D4ct+B31c_8R(UVF 5C^W(cFHk.#KSMF;+ Fz9G++|TB4-y.LWBO 20,722 20,353 LinearSelection(131, 103) Quadrants(3, 4, 1, 1, 1647 [0, 3, 0, 3, 0, 1, 1, 1, 1]) LinearSelection(90, 30) Diagonal(1) Swap(96, 191, 7, 5) FlipHorizontal() FlipVertical() PeriodRow(8) +;K|A8OZzSkpNHDM> +PcWzCKBcCUd2lRJ| 2KR++Op3V*8l^7ppS cC-*BOY_Bt7<WdkF| *<C61LK-d-U<z+MlR JHz#L)(WGZU+Mc:yB p)(/THSON|5FBW)++ +O(KBz++tZ^ERJ|2+ )fK*<.YWD%O#(B+pN L)|BWlF+5T4M9+TcR DC94:*ByBpByA64c7 d2GTL1|kPV^lp>REH 2GqMf.^pU/bV53.c| pT+(RlN_+O#jfJ2Gq +-5ZUV>EFOY<F1XBy K&;Fz6L(zD.2V>GFX ++t4b.cVz+@LYGFN^ k8O2<c*;-%OlF^R8p f524b.cM+(5|#9Sy# /k4&+PF5|djtz+M9_ 20,721 20,648 PeriodColumn(2) Period(18) Swap(4, 104, 8, 1) SwapLinear(116, 18, 1) H+M87CV@Kz/JNbVM) |JR(_VFFz9<Ut*5cZ G+kN-OGp+2|G++|TB 4-R)lk^D(+4(5J+JY M(+|BC7zPYLR/8KjR Op+8H.LWBO|<z29^% OF|T+lXz6PYALKDp+ l2Uc2KzF*K<SBKG)y 7tpcYAy29^4OFT-+d pcWddG+4Ucy5C^W(c MET+*5k.L-RR+4>f| pFy>#Z3P>Ldl5||.U qLBdpl%WO&D(MVE5F V5FcW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,586 20,720 PeriodColumn(2) Period(18) Swap(5, 105, 3, 2) Swap(92, 52, 1, 10) H+M8|TB@Kz/JNbVM) |DR(UcFFz9<Ut*5cZ G+kNpcYp+2|G++|TB 4WBO|<z29^%(5J+JY M(+|TC7zPYLR/8KjR Op+8y.L-R)Wk^D(+4 OF7CVlXz6PYALKJp+ l2_VFKzF*K<SBKG)y 7t-OGAy29^4OFT-+d pclddG+4Ucy5C^W(c MEB+*5k.L-RR+4>f| pFH>#Z3P>Ldl5||.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20717 20393 PeriodColumn(2) Period(18) PeriodRow(15) H+M8|CV@Kz/JNbVM) +B.;+B31c_81*H_Rq |DR(UVFFz9<Ut*5cZ #2pb&RG1BCOO|TfSM G+kNpOGp+2|G++|TB F;+B<MF6N:(+H*;2B 4-R)Wk^D(+4(5J+JY pzOUNyBO<Sf9pl/CN M(+|TC7zPYLR/8KjR :^j*Xz6-+l#2E.B)> Op+8y.LWBO|<z29^% OF7TBlXz6PYALKJp+ l2_cFKzF*K<SBKG)y 7t-cYAy29^4OFT-+d pclddG+4Ucy5C^W(c MEB+*5k.L-RR+4>f| pFH>#Z3P>Ldl5||.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ 20,716 20,391 PeriodColumn(2) Period(18) Swap(5, 152, 5, 1) Swap(101, 51, 1, 1) H+M8|dV@Kz/JNbVM) |DR(UcFFz9<Ut*5cZ G+kNp|Gp+2|G++|TB %-R)WU^D(+4(5J+JY M(+|TF7zPYLR/8KjR Op+8y.LWBO|<z29^4 OF7TBlXz6PYALKJp+ l2_cFKzF*K<SBKG)y 7t-cYAy29^4OFT-+C pclddG+4Ucy5C^W(V MEB+*5k.L-RR+4>fO pFH>#Z3P>Ldl5||.k qL+dpl%WO&D(MVE5C V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,712 20,632 PeriodColumn(2) Period(18) Swap(5, 105, 4, 2) Swap(101, 51, 1, 1) H+M8|TB@Kz/JNbVM) |DR(UcFFz9<Ut*5cZ G+kNpcYp+2|G++|TB %-R)WddD(+4(5J+JY M(+|TC7zPYLR/8KjR Op+8y.LWBO|<z29^4 OF7CVlXz6PYALKJp+ l2_VFKzF*K<SBKG)y 7t-OGAy29^4OFT-+d pclk^G+4Ucy5C^W(c MEB+*5k.L-RR+4>f| pFH>#Z3P>Ldl5||.U qL+dpl%WO&D(MVE5F V52cW<SVW)+k#2b^D 4ct+c+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,710 20,609 LinearSelection(114, 100) FlipVertical() FlipHorizontal() PeriodColumn(3) FlipVertical() RectangularSelection(0, 3, 7, 5) FlipVertical() FlipHorizontal() FlipHorizontal() FlipHorizontal() Dpz8K>HkZV+G^2O|+ k<BO-|d7_U-B*9Y*c )zPH(+WWOfGcz(S/p T1<l|R+6+W)cLCFBL .BO.q|3KpT)+Cc^M2 X:CV5y14EBCFWt>Z+ Ff4ctlN5bA;MNS.4+ fONB;2j+Yc8J#_F(R bRB.|M+2cz(+ZFVLG VJp+9l++7@dU^OzL< 5|BAKRtDp6-/EYy4z R*4F-cJ5MBUl|T<y+ 9#|TOzS+5M26yNbK< +%UG&#K;c.B5q2X+F Rl*k2p^OdFD8F-C>( Mt|P4_+j5+k9zdF&/ plVORS783+Kp^*p+2 :+G)zBcUWLHyMZ(#J +#D.KNBOW<fp(%Y*) RlP1GH>^kL2EpV|Td 20,276 20,710 Period(19) FlipHorizontal() Quadrants(4, 3, 11, 1, 2315 [1, 0, 2, 0, 0, 1, 0, 1, 1]) E4N|tU<|2+pGOpHFL q2+J5VM(D&OW%lNk+ GZ#R/l+G(4+(D^pd+ 25VlRzd2#k+)WVkW) R-4B+-9L5/RLYPS<W c+tc4KLz>pK#.kz7C T|+(MY@.FP2z<|Ztz +c+;.B+VkF3H*1OBW L.y8+pORC5VZKL8_c 13BR&bp2#|*U#TAYP 6zXlBT7FO%8+(>|OO CB1GFM<B+;FMBRDBS <K*FzKFc_2l++EM|H +(:N6OByNUOzpH>p) FO4^92yAYc-t7yp9f S<-6zX*j^:N^C5ycU 4+Gddlcpc(W.B)C/l >f|+-TbVMd;*|.UB2 Kp)GMSf^9JqR_jK8Z f+J+JD^bT|+F5Ec5* 20,710 20,572 PeriodColumn(2) Period(18) Swap(2, 155, 6, 3) SwapLinear(21, 51, 22) H+lddCV@Kz/JNbVM) |DB+4-+dpk^D(+4(5 J+JYM(2cW2|G++|TB *VFFz9<Ut*5cZG+H> #OGp+C7zPYLR/8KjR Opt+c.LWBO|<z29^% OF7TBlXz6PYALKJp+ l2_cFKzF*K<SBKG)y 7t-cYAy29^4OFT-+d pcM8|G+4Ucy5C^W(c MER(U5k.L-RR+4>f| pFkNpZ3P>Ldl5||.U qLR)Wl%WO&D(MVE5F V5+|T<SVW)+k#2b^D 4c+8y+ztZk.#Kp+fZ +B.;+B31c_81*H_Rq #2pb&RG1BCOO|TfSM F;+B<MF6N:(+H*;2B pzOUNyBO<Sf9pl/CN :^j*Xz6-+l#2E.B)> 20,630 20,706
Could any of thse be headed in the right direction, or are they all false positives / local maxima?
Jarlve, did you notice that we discussed the pivots recently? Doranchak found that the pivot symbols are period 39 ( period 29 mirrored ) repeats. I was saying that it is possible that they are caused by using the same words a couple of times in a transposition, and period 29/39 maybe because there are skips or nulls in the area. Another idea is that they are an intentional clue left to show that there is a horizontal inscription/transcription. A hint that there is transposition. Either way, without the pivots, there wouldn’t be a noticeable period 39 spike.
Yes I noticed.
That’s very interesting, so either they are causing the period 29/39 spike directly or they are an artifact of something else, possibly sitting inside or crossing a misalignment region (period shift). Every time I try to think about the pivots my mind kinda locks up, so I try to ignore them as much as possible. It’s just, these are very hard to explain.
I’ve gotten spikes around 20,900 for some of the transposed cipher texts. The plain texts still seem meaningless. But are the spikes significant?
To try to answer that, I created 10,000 random shuffles of Z340, ran them through azdecrypt and computed these statistics:
Could any of thse be headed in the right direction, or are they all false positives / local maxima?
Very good questions. I really wonder about that myself, bigrams also tend to increase scores etc.
Very good questions. I really wonder about that myself, bigrams also tend to increase scores etc.
Yes, all the +5 sigma azdecrypt scores correspond to ciphers with higher bigram counts. The cipher with the lowest bigram repeats has a sigma of 5 and 33 bigram repeats. (Compare to 25 bigram repeats for the original Z340).
For the 340 I untransposed the same way (EDIT: period 19), expanded the backward P, + and B and let AZD run on progressive for a while. I got this:
Nice work. I like the idea of the 340 being transposition + wildcards. It could explain the randomization in the cycles but leaves no explanation for the pivots. Though, at the moment the pivots still seem so mysterious we might as well keep trying things that look good.
If the 340 is just a simple transposition + wildcards (period, skytale, diagonal, non-keyed regular and irregular columnar transposition etc) then a solve should be just around the corner. Expand a few of the suspected wildcards (3 or 4) and use AZdecrypt with Reddit 6-grams and about 10.000.000 iterations per.
Here is such a cipher, to be clear, transposition + wildcards. Could be any of these: (period, skytale, diagonal, non-keyed regular and irregular columnar transposition) and anywhere between 3 to 6 wildcards. Oh, and one extra step somewhere, be either flipping, mirroring or reversing the cipher. Didn’t try-hard to emulate the 340. Should prove difficult but I hope you guys could take a look at it.
jarlve_tw1.txt kEbYYNOC6%T;[:Nj" 41?B43m!nPcMWV>JY QBB]j$b_f.2S@I(N/ ^?*%=R;NFekX<&nTo 3[hBlY$!MN<FT"EP# BVY,NNC3><_Nbc1j^ @fTFNI/-:6klQ%O&m Y3jjJ?.$W]S="YNNn [CM1_VA>NRe#FXbo< 2^?!6m%/hjE;)YBST MN3cjJPnfV>.Fb%N< Q*,Nj2)BB@&]I4M$k YT[lY=!P4S"1B3/)- Re<CT6NO;3n#BV,_m @JFF<NNlFSF^oI4Xk ]ANFh>bYY"TQEC-32 c;jjNn1OQ6jmf<[NB /&#T*.!?%M3=R*J*S )$]PBj_lY*"@YINek 1N[o&h<VE>bTcj!3P 1 2 3 4 4 5 6 7 8 9 10 11 12 13 5 14 15 16 17 18 19 16 20 21 22 23 24 25 26 27 28 29 30 4 31 19 19 32 14 33 3 34 35 36 37 38 39 40 41 5 42 43 18 44 9 45 46 11 5 47 48 1 49 50 51 23 10 52 20 12 53 19 54 4 33 22 26 5 50 47 10 15 2 24 55 19 28 4 56 5 5 7 20 29 50 34 5 3 25 17 14 43 39 35 10 47 5 40 42 57 13 8 1 54 31 9 6 51 21 4 20 14 14 30 18 36 33 27 32 38 45 15 4 5 5 23 12 7 26 17 34 28 58 29 5 46 48 55 47 49 3 52 50 37 43 18 22 8 21 9 42 53 14 2 11 59 4 19 38 10 26 5 20 25 14 30 24 23 35 28 29 36 47 3 9 5 50 31 44 56 5 14 37 59 19 19 39 51 32 40 16 26 33 1 4 10 12 54 4 45 22 24 16 38 15 17 19 20 42 59 57 46 48 50 7 10 8 5 6 11 20 23 55 19 28 56 34 21 39 30 47 47 50 5 5 54 47 38 47 43 52 40 16 49 1 32 58 5 47 53 29 3 4 4 15 10 31 2 7 57 20 37 25 11 14 14 5 23 17 6 31 8 14 21 35 50 12 5 19 42 51 55 10 44 36 22 18 9 26 20 45 46 44 30 44 38 59 33 32 24 19 14 34 54 4 44 15 39 4 40 5 48 1 17 5 12 52 51 53 50 28 2 29 3 10 25 14 22 20 24
I am interested and will work on it.
So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.
Lets say we have a + symbol with count of 24. EDIT: And we think that the + is a member of more than one cycle because it is high count but doesn’t seem to cycle well with any other symbols.
Start with making the symbol into two new symbols:
ABABABABABABABABABAB
And lets say the period is x=19. Calculate the sum of the scores for the period 1x, 2x, 3x, 4x, 5x and 6x repeats. Then make a two or three changes:
AABBABABABABABABABAB
Then calculate the sum of the scores for the period 1x – 6x repeats again. If the sum of the scores is higher, then keep the change. Otherwise, go back to the prior iteration. Repeat.
EDIT: Also do this with three possible symbols, ABC, four possible symbols, ABCD, etc. Use this method to figure out how many symbols the poly symbol should be segregated into.
OR, use the same process to maximize the cycle scores.
I suppose that which one works better may depend on the randomization of the cycles. But fortunately, the 340 is fairly cyclic.
I am thinking of a way to do this with my spreadsheets, and I think that I may be able to do it. I am wondering if the correct segregation of poly symbols would be beneficial as opposed to just expanding all of the poly symbols, considering a close but imperfect untransposition.
For tw1, I have five high count symbols that could be 1:1 or poly:
4, 5, 14, 19 and 47.
If I expand all of them, multiplicity will be 0.371.
So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.
That seems like a fairly difficult approach and I’m not sure if it will work.
As you may have seem I’ve come up with a new and simple measurement I’ve called flatness which measures how flat a distribution of frequencies are. If a cipher 10 characters long has 5 unique symbols each having a count of 2 then it is considered perfectly flat. Simply sum the difference of each unique symbol versus the average ABS(340/63-symbol_frequency) and add normalization.
Something interesting between the 408 and 340 can be noted in this regard. While the 408 is more cyclic than the 340 it is also flatter.
Full 408: 108.8
Full 340: 144.9
So, okay, perhaps the "+" symbol is causing the difference.
340 without "+" symbol: 132.8
Hmmm it is still higher, maybe more wildcards?
340 without "+,p,B" symbols: 130.6
Still higher, let’s remove all symbols with a frequency higher than 9.
340 without symbols frequency > 9: 130.0
It persists. There is something fundamental about the 340 that is causing it to be less flat than the 408. Can it be linked to the 340 being less cyclic than the 408?
So I have this idea about how to segregate a polyalphabetic symbol into multiple symbols.
That seems like a fairly difficult approach and I’m not sure if it will work.
It probably won’t work by maximizing the repeat scores. There wouldn’t be any new repeats, and the segregation would probably not be correct. You could have +19X +19X +19Y +19Y. The method should result in AX AX BY BY, but that isn’t necessarily the segregation.
I am not so sure about the cycle approach either but still thinking about it.
smokie/doranchak ..i have been playing around with smokies partial solve trying to find misalignment patterns.. i put it on a spreadsheet and came up with some more interesting words and mini sentences..i had to manipulate some letters.. but tried to to keep it in context.. i will post it up in a few days. i have also been using doranchaks cool period calculator trying to find a link between pivots and periods….and it got me to think that it would be interesting if we could drop "solves" in plaintext into the period calculator and then run through period manipulation to see if we can get better solutions.
doranchak do you think it has any value.
I am not sure. That partial solve also includes some wildcard expansion so that aspect would have to be incorporated into the period calculator as well. But then there are many other possible manipulations that can be performed prior to deriving a candidate plaintext. It would get very complicated to code up for the period calculator. I think it may be more fruitful to use azdecrypt for that, since Jarlve has already worked on putting a wide variety of manipulations into the solver. The difference, though, is that the solver doesn’t have a "hands on" mode for visualizing the manipulations and plaintext while it is running through possibilities. Jarlve, maybe you can say what you think about adding something like that.
doranchak yes it is the visual aspect that i am looking for and then manually manipulate …instead of numerics in the calculator the letters get locked in to the cell position and move around the same way as they do in the calculator now. using solves that have some merit change the periods through trying to align better…
I have a lot of irons in the fire with this project.
Another one is to try to find a cipher other than route transposition that would cause period 15/19 repeats. Daikon discussed bifid briefly and questioned why the period would be 38. I have been trying to figure out how a bifid ciopher causes period x/2 repeats. Perhaps I should add to my list making a message with period 30 , and then transcribe right left top bottom to see what would happen. To see if I can use bifid to create a message that has as many period 15/19 repeats as the 340. I understand how the cipher works, but not how the period repeats are created. Maybe doing it will help me understand.
Still working on tw1, expanded 4, 5, 14, 19 and 47 and untransposed period 14 transcription left right top bottom and right left bottom top. A lot of variance and no solve.
I am not sure. That partial solve also includes some wildcard expansion so that aspect would have to be incorporated into the period calculator as well. But then there are many other possible manipulations that can be performed prior to deriving a candidate plaintext. It would get very complicated to code up for the period calculator. I think it may be more fruitful to use azdecrypt for that, since Jarlve has already worked on putting a wide variety of manipulations into the solver. The difference, though, is that the solver doesn’t have a "hands on" mode for visualizing the manipulations and plaintext while it is running through possibilities. Jarlve, maybe you can say what you think about adding something like that.
I’m not sure what you mean/guys are asking for. The program does output mostly everything including the manipulated ciphertext, plaintext and the operation and its settings. So it does visualize the manipulation and plaintext. I’m willing to look into anything if it makes sense to me within the programs concept.
Are you asking for a ZKDecrypto style solver where you can input operations manually, sort of a Photoshop for ciphers?